The Development of Chrome and Nickel Projects in Kazakhstan & Russia

presented by
Nic Barcza

Oriel Resources Ltd
A Chrome Nickel & Ferroalloy Growth Company
Disclaimer

This presentation does not constitute or form part of and should not be construed as, an offer to sell or issue or the solicitation of an offer to buy or acquire securities of Mechel OAO (Mechel) or any of its subsidiaries in any jurisdiction or an inducement to enter into investment activity. No part of this presentation, nor the fact of its distribution, should form the basis of, or be relied on in connection with, any contract or commitment or investment decision whatsoever. Any purchase of securities should be made solely on the basis of information Mechel files from time to time with the U.S. Securities and Exchange Commission. No representation, warranty or undertaking, express or implied, is made as to, and no reliance should be placed on, the fairness, accuracy, completeness or correctness of the information or the opinions contained herein. None of the Mechel or any of its affiliates, advisors or representatives shall have any liability whatsoever (in negligence or otherwise) for any loss howsoever arising from any use of this presentation or its contents or otherwise arising in connection with the presentation.

This presentation may contain projections or other forward-looking statements regarding future events or the future financial performance of Mechel, as defined in the safe harbor provisions of the U.S. Private Securities Litigation Reform Act of 1995. We wish to caution you that these statements are only predictions and that actual events or results may differ materially. We do not intend to update these statements. We refer you to the documents Mechel files from time to time with the U.S. Securities and Exchange Commission, including our Form 20-F. These documents contain and identify important factors, including those contained in the section captioned “Risk Factors” and “Cautionary Note Regarding Forward-Looking Statements” in our Form 20-F, that could cause the actual results to differ materially from those contained in our projections or forward-looking statements, including, among others, the achievement of anticipated levels of profitability, growth, cost and synergy of our recent acquisitions, the impact of competitive pricing, the ability to obtain necessary regulatory approvals and licenses, the impact of developments in the Russian economic, political and legal environment, volatility in stock markets or in the price of our shares or ADRs, financial risk management and the impact of general business and global economic conditions.

The information and opinions contained in this document are provided as at the date of this presentation and are subject to change without notice.
Company information

- Oriel Resources Ltd is a London-based chrome and nickel mining and processing company formed in July 2003 and acquired by Mechel (NYSE: MTL) in March 2008
- Mechel is one of the leading Russian mining and metals companies
- Oriel’s primary focus has been the acquisition and development of chrome and nickel projects, primarily in Kazakhstan and the Russian Federation
- Mechel consolidated its ferroalloy assets into its subsidiary Oriel Resources in November 2008
- Oriel comprises:
 - The Voskhod Chrome mine and Plant (Kazakhstan)
 - The Tikhvin (Ferrochrome) Smelting Plant (St. Petersburg region)
 - The Southern Urals Nickel Plant (Orenburg region in Russia)
 - The Shevchenko Nickel Deposit (Kazakhstan) and
 - The Bratsk Ferroalloy (Ferrosilicon) Plant (Irkutsk region in Russia)
Oriel Resources assets in Kazakhstan and Russia

- Tikhvin Smelting Plant
- Shevchenko Nickel
- Voskhod Chrome
- Moscow
- Southern Urals Nickel Plant
- Bratsk Ferroalloy Plant
- St Petersburg
- Vladivostok

Kazakhstan

Russia
Voskhod Chrome Mine and Plant

- The deposit is located in North West Kazakhstan 90km from Aktobe.

- Average annual output of 1.3 million tonnes of mined chrome ore and 900,000 ton of lump, chip and concentrate.

- Production based on development ore commenced Q4 2008.

- Indicated resource of 19.1 million tons at 48.5% Cr₂O₃ with potential extension from the adjacent Karaagash deposit of 4 up to 8 million tons.

- Mintek (Study Manager) and Bateman carried out the pre-feasibility study in 2005.

- SRK (DFS Study Manager), DRA designed the plant based on Mintek’s MPD test work data from Voskhod core samples.
Voskhod chrome project satellite imagery

- Voskhod chrome project satellite imagery
- Karaagash Licence
- Road to Sarysai Railhead
- Tailings Dam
- Return Water Dam
- Mine Water Dam
- Access Road to Site
- ROM Pad
- DMS Plant
- Khromtau
- Donskoy GOK
- Road to Aktobe – 90km
- Rail Line
- Decline
- Mine Camp
Voskhod chrome ore zones/types in deposit

Metallurgical Ore Types

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHG</td>
<td>Competent High Grade</td>
</tr>
<tr>
<td>PHG</td>
<td>Powdery High Grade</td>
</tr>
<tr>
<td>CMG</td>
<td>Competent medium grade</td>
</tr>
<tr>
<td>PMG</td>
<td>Powdery medium grade</td>
</tr>
<tr>
<td>CSO</td>
<td>Competent Subordinate</td>
</tr>
<tr>
<td>PSO</td>
<td>Powdery Subordinate</td>
</tr>
</tbody>
</table>
CHG (competent high-grade) ore disaggregating to PHG
Voskhod chrome ore grade vs. recovery
Voskhod ore wet tumbling tests

Figure 8-8: Results of Wet Tumbling Tests

Cumulative mass passing [%] vs Screen size [mm]

- 1min
- 2min
- 5min
- 10min
2007 Boxcut backfilling & ventilation installation
Early 2008 process plant construction
Decline to Voskhod chrome mine and ore processing plant

Construction completed
Q4 2008
Chromite products from Voskhod plant

<table>
<thead>
<tr>
<th>Products</th>
<th>Yield</th>
<th>Cr$_2$O$_3$</th>
<th>Fe$_2$O$_3$</th>
<th>SiO$_2$</th>
<th>MgO</th>
<th>Al$_2$O$_3$</th>
<th>Cr/Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Lumpy</td>
<td>52.3</td>
<td>48.0</td>
<td>11.5</td>
<td>8.5</td>
<td>20.0</td>
<td>7.5</td>
<td>4.0</td>
</tr>
<tr>
<td>Chip</td>
<td>9.9</td>
<td>48.0</td>
<td>11.5</td>
<td>8.5</td>
<td>20.0</td>
<td>7.5</td>
<td>4.0</td>
</tr>
<tr>
<td>Concs.</td>
<td>7.6</td>
<td>57.0</td>
<td>12.5</td>
<td><3.0</td>
<td>17.0</td>
<td>8.0</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Plant production

Estimated: 900 kt/a chrome products

- **Lumpy** 75 % 675 kt/a max
- **Chip** 14 % 128 kt/a min
- **Concs.** 11 % 99 kt/a min
Tikhvin ferrochrome smelter, NW Russia
Tikhvin Ferroalloys Plant

- Located in Tikhvin, 200km South East of St Petersburg, Russia.

- Tikhvin’s chrome ore feed (340,000 tpa) sourced from Oriel’s Voskhod chrome mine in Kazakhstan.

- Production capacity of 140ktpa HC FeCr commenced April 2007

- 4 x 22.5MVA semi-closed submerged arc AC furnaces.

- Option to briquette chrome ore fines.

- Mintek’s Minstral controllers and Atoll MRP have been evaluated.
Chrome ore fines briquetting plant

Briquetting presses

TSP: schematic flowsheet of the chromite briquetting section

Figure 4.3
Tikhvin ferrochrome plant flow sheet

4 x 22.5 MVA SAF’s
Chromite smelting characteristics vs. SA ore

Kazak

SA

Canadian
Slag & alloy Mintek test results achieved at 1750 °C

<table>
<thead>
<tr>
<th>Description</th>
<th>MgO</th>
<th>Al₂O₃</th>
<th>SiO₂</th>
<th>CaO</th>
<th>TiO₂</th>
<th>V₂O₃</th>
<th>Cr₂O₃</th>
<th>MnO</th>
<th>FeO</th>
<th>Ni</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mass %</td>
</tr>
<tr>
<td>Slag 28</td>
<td>48</td>
<td>19</td>
<td>33</td>
<td>0.3</td>
<td>0.0</td>
<td>0.3</td>
<td>0.0</td>
<td>0.1</td>
<td>0.0</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Slag 29</td>
<td>42</td>
<td>32</td>
<td>23</td>
<td>0.3</td>
<td>0.0</td>
<td>0.1</td>
<td>0.0</td>
<td>0.2</td>
<td>0.0</td>
<td>98</td>
<td></td>
</tr>
<tr>
<td>Slag 30</td>
<td>47</td>
<td>21</td>
<td>32</td>
<td>0.8</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
<td>0.0</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td>Slag 31</td>
<td>49</td>
<td>16</td>
<td>34</td>
<td>0.3</td>
<td>0.0</td>
<td>0.1</td>
<td>0.0</td>
<td>0.1</td>
<td>0.0</td>
<td>99</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
<th>Si mass%</th>
<th>Cr mass%</th>
<th>Fe mass%</th>
<th>Ni mass%</th>
<th>C mass%</th>
<th>Total mass%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alloy 28</td>
<td>4.9</td>
<td>68.4</td>
<td>17.6</td>
<td>0.2</td>
<td>9.5</td>
<td>92*</td>
</tr>
<tr>
<td>Alloy 29</td>
<td>4.4</td>
<td>71.9</td>
<td>16.6</td>
<td>0.2</td>
<td>9.2</td>
<td>93*</td>
</tr>
<tr>
<td>Alloy 30</td>
<td>5.3</td>
<td>68.5</td>
<td>16.7</td>
<td>0.2</td>
<td>9.3</td>
<td>100</td>
</tr>
<tr>
<td>Alloy 31</td>
<td>6.4</td>
<td>67.1</td>
<td>18.3</td>
<td>0.2</td>
<td>8.4</td>
<td>92*</td>
</tr>
</tbody>
</table>

* low total – possible slag contamination
Tikhvin ferrochrome grades

Tikhvin High Carbon Ferrochrome grades from ore blend and Voskhod ore

<table>
<thead>
<tr>
<th>TYPICAL (ORE BLEND)</th>
<th>VOSKHOD ORE BASED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr</td>
<td>65.0% min</td>
</tr>
<tr>
<td>C</td>
<td>6.5-9%</td>
</tr>
<tr>
<td>Si</td>
<td>1.0% max.</td>
</tr>
<tr>
<td>S</td>
<td>0.05% max</td>
</tr>
<tr>
<td>P</td>
<td>0.03% max</td>
</tr>
<tr>
<td>Ti</td>
<td>0.04% max</td>
</tr>
</tbody>
</table>
Pre-reduction of Voskhod ore

60% reduction @ 1300 to 1400 °C in 60 mins.
The Voskhod plant can supply the Tikhvin ferrochrome plant 340 kt/a of chrome ore lump and chips to produce 140kt/a HCFeCr.

There is scope to produce up to 250kt/a of additional HCFeCr from the remaining 560kt/a tons of ore.

Preliminary studies indicate that based on using 400kt/a ore around 180 kt/a of HCFeCr would be produced.

The smelting options include the conventional SAF but a preliminary evaluation of DC arc furnace and pre-reduction technology indicates that these may offer benefits and could complement the SAF approach.

The selection of technology depends on the lump to fines ratio as a minimum of 300 kt/a of fines is required to justify one of the following:

- 1 x 65 MW DC arc furnace
- 1 x 300 kt/a sinter belt plant plus pre-heated feed to 1 x 55 MW SAF
- 1 x 300 kt/a pre-reduction plant plus x 40 MW SAF
- The balance of 260 kt/a of lumpy ore could be fed into a single 60 MW SAFor sold
Southern Urals Nickel Plant

- Built and commissioned in 1938, in the Town of Orsk, Orenburg Region.
- Integrated into Mechel in 2001 and Oriel in Q4 2008
- Two nickel laterite ore mines: Sakhara and Buruktal
- Process is based on a sulphide technology using coke fed shaft furnaces.
- Produces a high grade 85% Ni-containing ferronickel.
- Output in 2008 was equivalent to 16,000 tons of nickel contained in ferronickel.
- 30% of ferronickel is consumed intra-group, the rest is exported.
Shevchenko Ferronickel development project - Kazakhstan

Shevchenko Nickel Deposit

• The Shevchenko nickel deposit – green field project in the North-West Kazakhstan.

• Project at an evaluation/development stage.

• Proven reserves of 21.4Mt of 0.85% Ni, probable reserves of 83.0Mt of 0.77% Ni.

• Plans for development being determined from large scale pilot plants testwork including and extensive smelting campaign carried out at Mintek in 2005.
Nickel laterite profile

<table>
<thead>
<tr>
<th>SCHEMATIC LATERITE PROFILE</th>
<th>COMMON NAME</th>
<th>APPROXIMATE ANALYSIS (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RED LIMONITE</td>
<td>Ni Co Fe MgO</td>
</tr>
<tr>
<td></td>
<td>Low MgO</td>
<td>Ni Co Fe MgO</td>
</tr>
<tr>
<td></td>
<td>High Fe2O3</td>
<td>Ni Co Fe MgO</td>
</tr>
</tbody>
</table>

Oxide zone:
Low MgO
High Fe2O3

<table>
<thead>
<tr>
<th>SCHEMATIC LATERITE PROFILE</th>
<th>COMMON NAME</th>
<th>APPROXIMATE ANALYSIS (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>YELLOW LIMONITE</td>
<td>Ni Co Fe MgO</td>
</tr>
<tr>
<td></td>
<td>High MgO</td>
<td>Ni Co Fe MgO</td>
</tr>
<tr>
<td></td>
<td>Low Fe2O3</td>
<td>Ni Co Fe MgO</td>
</tr>
</tbody>
</table>

Silicate zone:
High MgO
Low Fe2O3
Shevchenko nickel ore particle size distribution

~70% < 5mm 50% < 1mm
Mintek twin electrode DC arc furnace pilot plant
Shevchenko nickel ore composition (laterite ore type)

<table>
<thead>
<tr>
<th>Dry Ore Basis Mass %</th>
<th>Average Limonite</th>
<th>Average Nontronite</th>
<th>Average Saprolite</th>
<th>Average Resource</th>
</tr>
</thead>
<tbody>
<tr>
<td>MgO</td>
<td>4.41</td>
<td>9.93</td>
<td>17.6</td>
<td>11.28</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>6.87</td>
<td>4.83</td>
<td>3.70</td>
<td>5.05</td>
</tr>
<tr>
<td>SiO₂</td>
<td>36.4</td>
<td>46.0</td>
<td>46.5</td>
<td>43.0</td>
</tr>
<tr>
<td>CaO</td>
<td>1.34</td>
<td>0.92</td>
<td>1.40</td>
<td>1.26</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>1.22</td>
<td>0.97</td>
<td>0.77</td>
<td>0.97</td>
</tr>
<tr>
<td>MnO</td>
<td>0.51</td>
<td>0.37</td>
<td>0.25</td>
<td>0.37</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>37.6</td>
<td>24.3</td>
<td>17.1</td>
<td>25.8</td>
</tr>
<tr>
<td>CoO</td>
<td>0.13</td>
<td>0.07</td>
<td>0.04</td>
<td>0.08</td>
</tr>
<tr>
<td>NiO</td>
<td>1.15</td>
<td>1.34</td>
<td>1.29</td>
<td>1.26</td>
</tr>
<tr>
<td>CuO</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.30</td>
<td>0.26</td>
<td>0.20</td>
<td>0.25</td>
</tr>
<tr>
<td>LOI</td>
<td>10.1</td>
<td>11.0</td>
<td>11.1</td>
<td>10.7</td>
</tr>
<tr>
<td>Total</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Ratios

<table>
<thead>
<tr>
<th></th>
<th>Average Limonite</th>
<th>Average Nontronite</th>
<th>Average Saprolite</th>
<th>Average Resource</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂/MgO</td>
<td>8.3</td>
<td>4.6</td>
<td>2.6</td>
<td>3.8</td>
</tr>
<tr>
<td>Fe/SiO₂</td>
<td>0.722</td>
<td>0.370</td>
<td>0.257</td>
<td>0.420</td>
</tr>
<tr>
<td>Fe/Ni</td>
<td>32.6</td>
<td>18.2</td>
<td>13.2</td>
<td>20.5</td>
</tr>
<tr>
<td>Ni/Co</td>
<td>8.9</td>
<td>19.4</td>
<td>30.8</td>
<td>16.1</td>
</tr>
</tbody>
</table>
Shevchenko nickel ore/slag compositions

- Saprolite
- Nontronite
- Limonite
- Average
The effect of Fe/SiO2 ratio on slag viscosity & conductivity

Viscosity and Resistivity of Slag at 1700°C versus Fe/SiO2 ratio

- Viscosity < 150 cP
- Resistivity 1.5 to 2 ohm.cm

Fe/SiO2 0.3 to 0.4
Composition of smelting sample vs resource data

<table>
<thead>
<tr>
<th>Test Samples:</th>
<th>Average Test Shevchenko</th>
<th>Average Test Tarasov</th>
<th>Average Test Blizhny</th>
<th>Average Test June 2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO$_2$/MgO</td>
<td>7.1</td>
<td>4.9</td>
<td>3.0</td>
<td>3.3</td>
</tr>
<tr>
<td>(CaO+MgO)/SiO$_2$</td>
<td>0.154</td>
<td>0.217</td>
<td>0.373</td>
<td>0.332</td>
</tr>
<tr>
<td>MgO/CaO</td>
<td>10.9</td>
<td>14.9</td>
<td>7.4</td>
<td>9.2</td>
</tr>
<tr>
<td>Fe/SiO$_2$</td>
<td>0.290</td>
<td>0.225</td>
<td>0.216</td>
<td>0.321</td>
</tr>
<tr>
<td>Fe/Ni</td>
<td>11.7</td>
<td>15.0</td>
<td>10.2</td>
<td>12.9</td>
</tr>
<tr>
<td>Ni/Co</td>
<td>7.5</td>
<td>24</td>
<td>31</td>
<td>23</td>
</tr>
<tr>
<td>Ni in calcine</td>
<td>1.59</td>
<td>0.98</td>
<td>1.25</td>
<td>1.41</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>May 2005 Resource Data</th>
<th>Average Limonite</th>
<th>Average Nontronite</th>
<th>Average Saprolite</th>
<th>Average Resource</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO$_2$/MgO</td>
<td>8.3</td>
<td>4.6</td>
<td>2.6</td>
<td>3.8</td>
</tr>
<tr>
<td>(CaO+MgO)/SiO$_2$</td>
<td>0.16</td>
<td>0.24</td>
<td>0.41</td>
<td>0.29</td>
</tr>
<tr>
<td>MgO/CaO</td>
<td>3.3</td>
<td>12.6</td>
<td>12.6</td>
<td>8.9</td>
</tr>
<tr>
<td>Fe/SiO$_2$</td>
<td>0.722</td>
<td>0.370</td>
<td>0.257</td>
<td>0.420</td>
</tr>
<tr>
<td>Fe/Ni</td>
<td>32.6</td>
<td>18.2</td>
<td>13.2</td>
<td>20.5</td>
</tr>
<tr>
<td>Ni/Co</td>
<td>8.9</td>
<td>19.4</td>
<td>30.8</td>
<td>16.1</td>
</tr>
<tr>
<td>Ni in calcine</td>
<td>1.01</td>
<td>1.18</td>
<td>1.15</td>
<td>1.11</td>
</tr>
</tbody>
</table>
Shevchenko slag SiO2/MgO ratio and FeO content

Electric Furnace Slag Compositions Superimposed
On the FeO-MgO-SiO2 Phase Diagram
(plotted as temperature vs SiO2/MgO at different FeO contents)

SiO2/MgO >3 <4

Average for deposit

NOTE 1: Japanese Fe-Ni Smelters and SLN
NOTE 2: Cerro Matoso (FeO ~ 20%)
Shevchenko Ni recovery vs. Ni alloy grade
Nickel alloy grade vs. carbon addition

Experimental Nickel in Alloy

- Nickel in Alloy for Tarasov
- Nickel in Alloy for Shevchenko
- Nickel in Alloy for Blizhny

Carbon addition, kg/ton calcine

Nickel in alloy, mass %
Shevchenko nickel in slag vs. carbon addition

Carbon Addition vs Ni in Slag for Tarasov & Blizhny

% Ni in Slag vs. % Carbon Addition

Tarasov
Blizhny
Linear (Tarasov)
Linear (Blizhny)
Shevchenko nickel vs. iron recovery

Estimated Fit for Experimental Data
To Theoretical curve ($k_{\text{gamma}} = 20$)
Actual Grades produced 15 to 20%

Theoretical Curve ($k_{\text{gamma}} = 50$)

Ni Recovery, %

Fe Recovery, %

Graph showing nickel and iron recovery rates with different theoretical and experimental data points.
Shevchenko nickel energy requirements

Influence of Operating Temperature on SER

SER (kWh/kg calcine)

Temperature (°C)

- Shevchenko
- Tarasov
- Blizhny

571 kWh/t
Shevchenko nickel furnace lining measurements

Individual Heatlosses for CFM Circuits on Panels 1, 2, 5 & 6 (Heats 111 to 120)

- Power off: Slipped electrode, Off gas cleaning and Bath Inspection
- Slag Tap 111
- Slag Tap 112
- Slag Tap 113
- Slag Tap 114
- Feed off, CFM High Alam
- Slag Tap 115
- Slag Tap 117
- Slag Tap 118
- Slag & Metal Tap 110
- Slag & Metal Tap 116
- Slag & Metal Tap 119

Date and Time:
- 20-Mar-05 14:24:00
- 20-Mar-05 16:48:00
- 20-Mar-05 19:12:00
- 20-Mar-05 21:36:00
- 20-Mar-05 00:30:00
- 21-Mar-05 02:24:00
- 21-Mar-05 04:48:00
- 21-Mar-05 07:12:00
- 21-Mar-05 09:36:00
- 21-Mar-05 12:00:00
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nickel in Calcine</td>
<td>0.93 %</td>
</tr>
<tr>
<td>Nickel in Slag</td>
<td>0.10 %</td>
</tr>
<tr>
<td>Calcine</td>
<td>0% LOI fed at 900°C</td>
</tr>
<tr>
<td>Dust losses from the furnace (% of Calcine)</td>
<td>2 %</td>
</tr>
<tr>
<td>Hearth Power Density</td>
<td>500 kW/m²</td>
</tr>
<tr>
<td>Process Energy (kWh/kg calcine)</td>
<td>0.571 kWh/kg</td>
</tr>
<tr>
<td>100% thermal efficiency</td>
<td></td>
</tr>
<tr>
<td>Slag Operating Temperature</td>
<td>1650°C</td>
</tr>
<tr>
<td>Maximum Operating Voltage</td>
<td>1200V</td>
</tr>
<tr>
<td>Operating Voltage (20 to 50kA)</td>
<td>900 to 1200V</td>
</tr>
<tr>
<td>Arc Length:</td>
<td>20 to 30cm</td>
</tr>
<tr>
<td>Bath Depth:</td>
<td>50cm</td>
</tr>
<tr>
<td>Slag resistivity:</td>
<td>2 to 3 ohm.cm</td>
</tr>
<tr>
<td>Ni in crude ferronickel product</td>
<td>18 to 22% nickel</td>
</tr>
<tr>
<td>Electrode Consumption</td>
<td>2 kg/MWh</td>
</tr>
<tr>
<td>Reductant Addition, Kazakhstan Coal</td>
<td>3.45%</td>
</tr>
<tr>
<td>Dolime Addition, Alexeyevka Dolime</td>
<td>5.0%</td>
</tr>
<tr>
<td>Metal Make per ton Calcine (~20% nickel)</td>
<td>41.3 kg</td>
</tr>
<tr>
<td>Slag Make per ton Calcine</td>
<td>975 kg</td>
</tr>
</tbody>
</table>
Process flow sheet for 80 MW DC arc furnace

Calcined Dclomite
- 23,552 tpa
- 3.0 tph

Calcined Ore
- 788,400 tpa
- 100.0 tph
- 1.1 Ni %
- 8,735 tpa Ni

POWER
- 68.9 MWh/t Ni tapped

Coal
- 31,221 tpa
- 4.0 tph
- 44.7% fixed C
- 25 °C

DC Smelting
- 900 °C

Off gas
- 62,220 tpa
- 7.9 tph
- 84,953 m³/h

Crude FeNi
- 39,239 tpa
- 5.0 tph
- 75.6% Fe
- 20.4% Ni
- 7,993 tpa Ni

Furnace Slag
- 741,813 tpa
- 94.1 tph
- 0.10 Ni %
- 742 tpa Ni
Shevchenko Ferronickel Process Flow Sheet

- COAL
- Reductant Drying
- Calcining
- Off Gas Treatment
- Consumers
- Slag Granulation
- SLAG DUMP
- 3 x 80 MW
- ~2.5 million tpa
- ~450 ktpa
- Dolomite Milling & Drying
- Dynamic Separator
- Recycling
- Disposal
- Dolomite
- Natural or Furnace Gas
- ROM ORE Stockpiles
- ~5 million tpa
- Aerofall Mill
- Reductant
- ~200 ktpa
- Refining Agents
- Alloy Shotting
- Alloy Packaging
- Ladle Furnace Alloy Refining
- ~150 kpa
- Product Dispatch
- ~150 kpa Product Dispatch

Shevchenko nickel process flow sheet
Shevchenko nickel extraction technology

- Atmospheric Tank and Heap acid leach technologies to produce a mixed nickel hydroxide product (MHP) are being evaluated.

- Mintek and SGS carried out bench and pilot plant-scale testwork with favourable extraction results and generated MHP samples for further evaluation and development.

- Test work in stirred tanks gives up to 90% nickel recovery in 12-14 hours on Shevchenko ores, with favourable acid consumption rates <500 kg/t dry ore.

- Demonstration scale MHP production and smelting would provide baseline technological, operational & commercial parameters for future full scale production.

- Sulphur readily available in-country at competitive rates.

- Competitive operating costs are expected due to availability of low-cost acid and use of DC furnace technology to smelt calcined nickel-rich MHP.
Shevchenko mixed nickel hydroxide product (MHP)
MHP CHARACTERISTICS

TYPICAL AVERAGE COMPOSITION (% DRY BASIS)

<table>
<thead>
<tr>
<th></th>
<th>Ni</th>
<th>Co</th>
<th>Fe</th>
<th>Mg</th>
<th>Al</th>
<th>Mn</th>
<th>Cu</th>
<th>Zn</th>
<th>Ca</th>
<th>Si</th>
<th>Cr</th>
<th>S*</th>
<th>P</th>
<th>LOI (1270°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>36.6</td>
<td>1.90</td>
<td>0.21</td>
<td>0.593</td>
<td>0.98</td>
<td>4.91</td>
<td>0.014</td>
<td>0.496</td>
<td>0.1</td>
<td>0.167</td>
<td>0.014</td>
<td>4 to 5</td>
<td><0.002</td>
<td>~30 to 35</td>
</tr>
</tbody>
</table>

* SULPHUR AS SULPHATES
Thermal characterisation of MHP

TGA

DSC

Mass Change: -3.22%
Mass Change: -17.15%
Mass Change: -11.34%
Calcined MHP product prior to smelting

Calcined MHP at 750 and 1275 deg C
CALCINED MHP CHARACTERISTICS FROM SHEVCHENKO SAMPLES

TYPICAL AVERAGE COMPOSITION (%)

<table>
<thead>
<tr>
<th>Element</th>
<th>Ni*</th>
<th>Co*</th>
<th>Fe</th>
<th>Mg</th>
<th>Al</th>
<th>Mn</th>
<th>Cu</th>
<th>Zn</th>
<th>Ca</th>
<th>Si</th>
<th>Cr</th>
<th>S</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content</td>
<td>59.2</td>
<td>3.38</td>
<td>2.60</td>
<td>2.88</td>
<td>0.65</td>
<td>5.48</td>
<td>0.014</td>
<td>0.54</td>
<td>0.24</td>
<td>0.58</td>
<td>0.007</td>
<td><0.007</td>
<td><0.002</td>
</tr>
</tbody>
</table>

* NICKEL AND COBALT CONTAINED (AS OXIDES)
Estimated Ferronickel production for different grades of alloy based on smelting calcined MHP in the 12 MW DC arc furnace

<table>
<thead>
<tr>
<th>ALLOY GRADE</th>
<th>POWER CONS.</th>
<th>EFFECTIVE POWER</th>
<th>PRODUCTION TONS/h</th>
<th>FENI ALLOY TONS/YEAR</th>
<th>NICKEL UNITS TONS/YEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni %</td>
<td>MWh/t Alloy</td>
<td>MW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>1.6</td>
<td>10</td>
<td>6.38</td>
<td>50,260</td>
<td>45,235</td>
</tr>
<tr>
<td>45</td>
<td>1.1</td>
<td>10</td>
<td>9.27</td>
<td>73,110</td>
<td>32,900</td>
</tr>
<tr>
<td>30</td>
<td>0.9</td>
<td>10</td>
<td>11.33</td>
<td>89,350</td>
<td>26,810</td>
</tr>
</tbody>
</table>

Assumptions:

FeNi (85% NiO & CoO) in calcined MHP feed

NiFe alloy melting energy requirement 0.6 MWh/t

Thermal efficiency - 85 % Plant availability 95 %
• Smelt upgraded scalped ore in 2 x 80 MW DC arc furnaces to produce 20 kt/a (20% Ni FeNi)
• Leach balance of ore from high-grading mining from deposits and downgraded scalped ore fraction to produce crude MHP
• Enrich calcined ore for smelting with intermediate nickel units to produce 25% Ni FeNi
• Smelt some calcined MHP in 1 x 12 MW DC arc furnace to produce high grade 85% Ni FeNi
Acknowledgements

Mintek
Bateman
DRA
SGS
Tenova Pyromet

Any Comments or Questions?

Oriel Resources Ltd
An Integrated Ferroalloy Growth Company
June 2009

A subsidiary of