Crude TiCl₄ purification: a review of the current state of the art and future opportunities

L. Hockaday and A. Kale

Mintek, Randburg, South Africa

Raw titanium tetrachloride (TiCl₄) is produced by chlorination of titania feedstock. Prior to its utilization in the manufacture of titanium dioxide pigment or titanium metal, the TiCl₄ is purified by adding reagents that react with the impurities in the crude TiCl₄, followed by distillation of the mixture. The current state of the art in purification of crude TiCl₄ was surveyed. Tests were conducted at the laboratory scale to assess the efficiency of various additives used in the purification process to minimize the vanadium content in the distillate. The effects of various reagents, namely oleic acid, sodium oleate, potassium oleate, and copper on the purification of crude TiCl₄ were compared. The purified TiCl₄ was water-clear in aspect and analysed < 2 ppm vanadium for all reagents tested. Possible reactions between the impurities in the crude TiCl₄ and the reagents are investigated thermodynamically with the FactSage program.

INTRODUCTION

Titanium tetrachloride (TiCl₄) is obtained by the chlorination of a titanium-bearing mineral such as ilmenite and rutile, as well as from titanium slag. The chlorination process usually takes place in a fluidized bed in the presence of chlorine gas and a reducing agent such as petroleum coke, resulting in crude titanium tetrachloride. TiCl₄ is an intermediate product in the production of titanium dioxide (TiO₂) pigment and titanium metal. The pure form of titanium dioxide is used in the pigment industry for paints, food colouring etc., and titanium metal is widely used in the aerospace, medicine, sport, and semiconductor production industries. The crude TiCl₄ has many impurities, most of which can be removed through distillation; however, some are difficult to remove e.g. vanadium oxychloride (VOCl₃). This impurity has a boiling point close to that of the desired product, making separation by distillation ineffective. The removal of impurities is especially important as their presence in TiO₂ pigment and titanium sponge reduces the quality of pigment and increases the hardness of the metal respectively (Xiong et al., 2012).

A chemical treatment is often used to precipitate such impurities or to convert them into high-boiling impurities, ensuring that separation by distillation is effective. Various substances can be used as chemical treatment agents, such as metal powders (iron, aluminium, copper etc.), petroleum fractions, alkali metal hydroxides, inorganic gases, and vegetable or animal oils and their derivatives.

The aim of this work was to produce TiCl₄ of high purity, containing significantly low levels of vanadium and suitable for use in the TiO₂ pigment and Ti metal industries, utilizing Mintek’s laboratory-scale set-up. Various purification experiments were conducted using both organic and inorganic treatment agents to purify crude TiCl₄. The agents were compared in terms of their effects and economic viability.
From Table I, it can be seen that Air Products and TOHO high grade have stringent restrictions on vanadium content, at 1 ppb and 1 ppm respectively. Air Products uses the TiCl₄ for production of titanium metal and TOHO high grade supplies the semiconductor industry. For use in the pigment industry, the vanadium content must be below 10 ppm and preferably below 5 ppm. The vanadium content in crude TiCl₄ is typically between 200 and 500 ppm. Judging from the commercial specifications, purification of TiCl₄ is essential. Table I shows some commercial specifications by various industries.

<table>
<thead>
<tr>
<th>Product/Grade</th>
<th>TiCl₄ (%)</th>
<th>V (ppm)</th>
<th>Fe (ppm)</th>
<th>Al (ppm)</th>
<th>Sn (ppm)</th>
<th>Si (ppm)</th>
<th>Sb (ppm)</th>
<th>As (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air products</td>
<td>>99.7</td>
<td><0.001</td>
<td><0.003</td>
<td><0.002</td>
<td><0.001</td>
<td><0.001</td>
<td><0.002</td>
<td></td>
</tr>
<tr>
<td>TLT-1 (TOHO)</td>
<td>>99.9</td>
<td><10</td>
<td><10</td>
<td>-</td>
<td><30</td>
<td><5</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>High grade</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0.1</td>
</tr>
<tr>
<td>Osaka Titanium Technologies (2013)</td>
<td>99.9</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

LITERATURE REVIEW

Literature sources were reviewed in order to gain a better understanding of the crude TiCl₄ purification process. Various reagents, namely alkali metal hydroxides, metal powders (Fe, Zn, Sn, Cu, Sb, Na, Mg, Ti or Al), TiCl₃.1/3AlCl₃, the salts of stearic, myristic, palmitic, oleic, and lauric acids, oleic acid, animal fat, vegetable oil, petroleum fractions, hydrocarbon polymers, soap, dichlorobenzene, chlorotoluene, hydrogenated naphthenic oil, white mineral oil (WMO), and chloronaphtolene have been used as treatment agents, alone or in combination, to bind impurities before purified TiCl₄ is distilled off. The treatment agents, operating conditions and results are summarized in Table II. Some unique processes are discussed separately as they did not conform to the common procedure of refluxing followed by distillation.

In a paper on the preparation of high-purity TiCl₄, Clabaugh, Leslie, and Gilchrist (1955) claim that most metal impurities except V and Sn can be removed by distillation without any treatment agents. They also describe the removal of organic impurities by the addition of Cl₂, aluminium chloride hexahydrate (AlCl(OH)₆), and water or by the addition of Br; the use of Cu to remove V is also described.

A patent entitled 'Process for the purification of titanium tetrachloride' (Sironi et al., 1971) describes a method of producing titanium tetrachloride with a vanadium content of less than 1 ppm, using hydrogen sulphide gas (H₂S) to achieve the desired purity levels through precipitation of vanadium impurities. According to the invention, the crude TiCl₄ from the chlorination process is passed through a spray quencher where it is injected with the liquid TiCl₄ and at the same time treated with H₂S in order to cool the vapour stream from high temperatures to 130–180°C, to remove the vanadium and other low-boiling impurities in the vapour phase.
Winter (1975) proposes the purification of vanadium-containing TiCl₄ by heating with TiCl₃·1/3AlCl₃. The reaction between the reagent and impurities in the TiCl₄ has very fast kinetics, and the reaction products are filterable from liquid TiCl₄.

Bonsack (1978) added water to crude TiCl₄ to remove impurities of niobium pentachloride and tantalum pentachloride. Water reacts preferentially with the niobium and tantalum compounds to form insoluble hydrates.

Table II. Experimental conditions and results from some reviewed articles.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Treatment agent</th>
<th>Addition of treatment agent</th>
<th>Initial vanadium content</th>
<th>Final vanadium content</th>
<th>Operating temperature (°C)</th>
<th>Refluxing time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cole and Meister, 1946</td>
<td>Alkali metal hydroxide</td>
<td>-</td>
<td>0.1 to 1% wt% crude TiCl₄</td>
<td><10 ppm</td>
<td>136</td>
<td>1-6 h</td>
</tr>
<tr>
<td>Meyers, 1946</td>
<td>Alkali salts of fatty acids</td>
<td>-</td>
<td>0.15-0.3 wt% crude TiCl₄</td>
<td>1-3 ppm</td>
<td>134-138</td>
<td>1-2 h</td>
</tr>
<tr>
<td>Stambaugh, 1956</td>
<td>Alkali metal hydroxide + metal</td>
<td>-</td>
<td>5-0.6 wt% metal to crude TiCl₄</td>
<td><10 ppm</td>
<td>136</td>
<td>90 min</td>
</tr>
<tr>
<td>Hansley and Schott, 1960</td>
<td>Fine salt and powdered metal</td>
<td>-</td>
<td>0.05-5 wt% crude TiCl₄</td>
<td>200-4000 ppm</td>
<td>1 ppm</td>
<td>90-136 s in scrubber set-up</td>
</tr>
<tr>
<td>Clark and Kolb, 1970</td>
<td>Any organic soap (e.g. potassium oleate)</td>
<td>-</td>
<td>3 mol H₂S/1 mol V</td>
<td>2200 ppm</td>
<td>1 ppm</td>
<td>15-50 s</td>
</tr>
<tr>
<td>Sironi et al., 1971</td>
<td>Hydrogen sulphide</td>
<td>-</td>
<td>1-2 wt% crude TiCl₄</td>
<td>0.1 ppm</td>
<td>136</td>
<td>30 min</td>
</tr>
<tr>
<td>Goddard and Litwin, 2002</td>
<td>Copper</td>
<td>-</td>
<td>1.6 g/g VOCI₃</td>
<td>2860 ppm</td>
<td>136</td>
<td>40 min</td>
</tr>
</tbody>
</table>

Bonsack and Schneider (1982) claim that vanadium chlorinated with high-surface-area carbon forms VCl₃, rather than VOCl₃ or VCl₄, which can readily be separated as it remains in solid form below 450°C. This alternative process allows the separation of vanadium impurities before TiCl₄ condensation.
Ishizuka (1988) removed impurities from crude TiCl₄ by heating over a catalytic metal (Cu, Fe, or Cu and Fe alloys) above 300°C to reduce oxygen impurities to substances less volatile than TiCl₄, which can then be removed from gaseous TiCl₄ or in the subsequent distillation. Lowering the oxygen content in TiCl₄ used for metal production improves the ductility of the titanium metal produced.

According to the literature, the problem is clearly not to find a treatment agent, since many has been described, but rather to find a reagent that achieves the desired TiCl₄ purity in a cost-effective way with minimal adverse impact on the production process.

THERMODYNAMIC DATA

Table III shows the boiling points of metal chlorides often associated with titanium tetrachloride in the crude mixture. It can be seen that AlCl₃, AsCl₃, VOCl₃, VCl₄, and SnCl₄ have boiling points close to that of titanium tetrachloride (136°C), making it difficult to separate them from one another using physical processes such as distillation. Although ferric chloride, which is a very common impurity in titaniferous materials, has a boiling point significantly higher than 136°C, it is known to react with other components in the system to form lower-boiling complexes/compounds that can contaminate the titanium tetrachloride. Antimony chlorides, ferrous chloride, and calcium and magnesium chlorides are high-boiling compounds and do not pose any problems during the distillation process.

<table>
<thead>
<tr>
<th>Chemical name</th>
<th>Chemical formula</th>
<th>Boiling point (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Titanium tetrachloride</td>
<td>TiCl₄</td>
<td>136</td>
</tr>
<tr>
<td>Titanium trichloride</td>
<td>TiCl₃</td>
<td>Decomposes at 440°C</td>
</tr>
<tr>
<td>Vanadium oxychloride</td>
<td>VOCl₃, yellow</td>
<td>127</td>
</tr>
<tr>
<td>Vanadium tetrachloride</td>
<td>VCl₄, red</td>
<td>149</td>
</tr>
<tr>
<td>Vanadium trichloride</td>
<td>VCl₃, pink or violet</td>
<td>Decomposes at 300°C</td>
</tr>
<tr>
<td>Vanadium dichloride</td>
<td>VCl₂, green</td>
<td>1506</td>
</tr>
<tr>
<td>Antimony pentachloride</td>
<td>SbCl₅</td>
<td>Decomposes at 140°C</td>
</tr>
<tr>
<td>Antimony trichloride</td>
<td>SbCl₃</td>
<td>220</td>
</tr>
<tr>
<td>Ferric chloride</td>
<td>FeCl₃</td>
<td>315</td>
</tr>
<tr>
<td>Tin tetrachloride</td>
<td>SnCl₄</td>
<td>114</td>
</tr>
<tr>
<td>Arsenic trichloride</td>
<td>AsCl₃</td>
<td>130</td>
</tr>
<tr>
<td>Silicon tetrachloride</td>
<td>SiCl₄</td>
<td>58</td>
</tr>
<tr>
<td>Aluminium chloride</td>
<td>AlCl₃</td>
<td>183</td>
</tr>
<tr>
<td>Ferrous chloride</td>
<td>FeCl₂</td>
<td>1023</td>
</tr>
<tr>
<td>Copper chloride,</td>
<td>CuCl₂, brown-yellow</td>
<td>993</td>
</tr>
<tr>
<td>Nantokite</td>
<td>Cu₂Cl₂, white</td>
<td>1366</td>
</tr>
<tr>
<td>Calcium chloride</td>
<td>CaCl₂</td>
<td>1935</td>
</tr>
<tr>
<td>Magnesium chloride</td>
<td>MgCl₂</td>
<td>1412</td>
</tr>
</tbody>
</table>

Evaluation of reactions

The crude titanium tetrachloride contains a lot of impurities as a result a number of chemical reactions that can occur between TiCl₄ and other metal chlorides present in the crude mixture upon addition of either an organic or an inorganic treating agent. Some chemical reactions between the treatment agent and various chlorides/oxychlorides of vanadium and iron have been thermodynamically evaluated and the results are discussed in the following sections. These reactions are by no means the only reactions that can take place; for instance, no data was available for reactions with VOCl and VOCl₂ as
products, and these reactions were not investigated. Vanadium is the most detrimental impurity in TiCl₄, and iron chlorides are often present in higher concentrations than desirable.

The thermodynamic properties of the reactions, such as changes in Gibbs free energy, enthalpy, and entropy, can be calculated using the FactSage thermodynamic simulation software. This requires an input of possible reactants and products, operating temperature, and pressure.

\[
\begin{align*}
\text{Cu} + \text{VOCl}_3 &\rightarrow \text{CuO} + \text{VCl}_3 \quad [1] \\
\text{Cu} + \text{VCl}_4 &\rightarrow \text{CuCl} + \text{VCl}_3 \quad [2] \\
\text{Cu} + \text{VCl}_4 &\rightarrow \text{CuCl}_2 + \text{VCl}_2 \quad [3] \\
\text{FeCl}_3 + \text{Cu} &\rightarrow \text{FeCl}_2 + \text{CuCl} \quad [4] \\
\text{FeCl}_3 + \text{CuCl} &\rightarrow \text{FeCl}_2 + \text{CuCl}_2 \quad [5] \\
\text{VOCl}_3 + \frac{1}{2} \text{C} &\rightarrow \text{VCl}_3 + \frac{1}{2} \text{CO}_2 \quad [6] \\
\text{VOCl}_3 + \text{C} &\rightarrow \text{VCl}_3 + \text{CO} \quad [7] \\
\text{VOCl}_3 + \frac{1}{2} \frac{1}{2} \text{C} &\rightarrow \frac{1}{2} \text{VCl}_4 + \frac{1}{2} \text{VCl}_2 + \frac{1}{2} \text{CO}_2 \quad [8] \\
\text{VOCl}_3 + \text{C} &\rightarrow \frac{1}{2} \text{VCl}_4 + \frac{1}{2} \text{VCl}_2 + \text{CO} \quad [9] \\
\text{VCl}_4 + \frac{1}{2} \text{C} &\rightarrow \text{VCl}_2 + \frac{1}{2} \text{CCl}_4 \quad [10] \\
\text{VCl}_4 + \frac{1}{2} \text{C} &\rightarrow \text{VCl}_3 + \frac{1}{2} \text{CCl}_4 \quad [11] \\
\text{FeCl}_3 + \frac{1}{2} \frac{1}{2} \text{C} &\rightarrow \text{FeCl}_2 + \frac{1}{2} \text{CCl}_4 \quad [12]
\end{align*}
\]

Solubility data for the iron chlorides and vanadium oxychlorides in TiCl₄ was not available.

The thermodynamic evaluation shows that copper may indeed react with vanadium and iron chlorides, producing chlorides with much higher boiling points than TiCl₄ and thus ensuring that purified TiCl₄ is obtained through distillation.

Figure 1. Gibbs free energy evaluation for reactions [1] to [5].

Figure 3. Gibbs free energy evaluation for reactions [6] to [12].

Xiong et al. (2012) proposed that VOCl₃ was converted to VOCl₂ (solid phase) by TiCl₃ formed through the reduction of TiCl₄ using aluminium powder and carbon, which was obtained from the pyrolytic
cracking of WMO. Although pyrolytic cracking of the white mineral oil to carbon seems unlikely at such low temperatures and is contra-indicated by the fouling caused by the polymerized organic residue in industry, thermodynamic investigation confirms that carbon might be an effective treatment agent to pacify vanadium and iron impurities.

\[
\begin{align*}
\text{CH}_3\text{(CH}_2\text{)}_7\text{CH}=\text{CH(}\text{CH}_2\text{)}_7\text{COOH} \\
\text{Oleic acid}
\end{align*}
\]

\[
\begin{align*}
\text{CH}_3\text{(CH}_2\text{)}_7\text{CH}=\text{CH(}\text{CH}_2\text{)}_7\text{COONa} \\
\text{Sodium oleate}
\end{align*}
\]

\[
\begin{align*}
\text{CH}_3\text{(CH}_2\text{)}_7\text{CH}=\text{CH(}\text{CH}_2\text{)}_7\text{COOK} \\
\text{Potassium oleate}
\end{align*}
\]

Figure 2. Line structure, chemical formulae, and common names for oleic acid and its salts.

Oleic acid (CH3(CH2)7CH=CH(CH2)7COOH) is an unsaturated organic carboxylic acid and therefore likely to undergo the typical reactions of both alkenes and carboxylic acids. These reactions include addition and polymerization of the alkene bond and nucleophilic substitution reactions of the carboxylic acid bonds (McMurry, 1996). In Figure 2 the line bond structures of the organic treatment agents are compared.

Sodium oleate and potassium oleate share the same structural form as oleic acid, with the alkali metals replacing the hydrogen of the –OH group. For ease of discussion we replace CH3(CH2)7CH=CH(CH2)7CO with placeholder R. We can then write oleic acid as ROH and its salts as RONa and ROK.

\[
\begin{align*}
\text{VOCl}_3 + 3 \text{ROH} & \rightarrow \text{VO(OR)}_3 + 3 \text{HCl} & [13] \\
\text{VOCl}_3 + 3 \text{RONa} & \rightarrow \text{VO(OR)}_3 + 3 \text{NaCl} & [14] \\
\text{VOCl}_3 + 3 \text{ROK} & \rightarrow \text{VO(OR)}_3 + 3 \text{KCl} & [15]
\end{align*}
\]

Vanadium oxytrichloride (VOCl3) is also strongly Lewis acidic (Wikipedia, 2016) and is used as a catalyst in alkene polymerization. It would therefore promote polymerization of the alkene bond in the carboxylic acid and its salts, leading to the organic residue that fouls reactors in industry. TiCl3 is also known to act as a catalyst for polymerization of alkenes (McMurry, 1996).

EXPERIMENTAL PROCEDURES

Titanium tetrachloride is a highly insoluble, thermally stable metal halide that is liquid at room temperature. It is a clear colourless liquid in pure form, but crude titanium tetrachloride may be yellow or reddish-brown in appearance. It has low melting and boiling temperatures, namely -24.1°C.
and 136.4°C respectively. TiCl₄ is extremely moisture-sensitive and reacts violently with water/air to form toxic HCl gas and titanium dioxide/oxychloride.

![Figure 3. Experimental set-up of reflux column and condenser.](image)

Figure 3 depicts the set-up used for investigation of the chemical treatment and distillation of the crude mixture of TiCl₄ using various additives. The set-up consists of a round-bottom flask containing a mixture of crude TiCl₄ and treatment agents agitated with a magnetic stir bar; the flask is immersed in a beaker containing heating oil. The oil should be stable at high temperatures as it is heated to up to 200°C to enable distillation. The beaker is placed on a hot plate with a magnetic stirrer. During the experiment, the vapours from the heated crude mixture enter the reflux condenser where they are condensed back into the liquid phase and return to the flask; this process is called refluxing. The distillation column is connected to the reflux column in an inclined position. The collection flask is connected to the bottom of the distillation column. After the crude mixture has undergone chemical pre-treatment, a heating mantle/heating oil bath can be used to provide increased energy to the mixture in the round-bottom flask, causing the vapour to reach the distillation column, condense, and collect in the collection flask. The non-condensable gases from the distillation column are vented after being bubbled through NaOH solution. The distillation column may be cooled with cold water from a chiller. In the present configuration, the cooling water to the distillation column was at room temperature and no cooling was needed on the reflux column. A data logger connected to a B-type thermocouple was used to monitor the temperature of the oil bath around the feed flask.

Table IV. Operating conditions of the purification trials.

<table>
<thead>
<tr>
<th>Refluxing agent</th>
<th>Dosage (wt%)</th>
<th>Refluxing T (°C)</th>
<th>Time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trial 1: Oleic acid</td>
<td>0.15</td>
<td>136</td>
<td>30</td>
</tr>
<tr>
<td>Trial 2: Sodium oleate</td>
<td>0.25</td>
<td>136</td>
<td>30</td>
</tr>
<tr>
<td>Trial 3: Potassium oleate</td>
<td>0.25</td>
<td>136</td>
<td>30</td>
</tr>
<tr>
<td>Trial 4: Copper metal powder</td>
<td>1</td>
<td>136</td>
<td>30</td>
</tr>
</tbody>
</table>

Table IV shows the details of each purification trial, including the type and dosage of the treatment agent and the refluxing time. The dosages selected for the tests were estimated from the literature.
The crude and purified batches of titanium tetrachloride were analysed for metals such as Fe, Al, Cu, and V using inductively coupled plasma-optical emission spectrometry.

RESULTS

Trials for the purification of TiCl₄ with oleic acid were successfully executed. The measured oil bath temperatures are given in Figure 4 to Figure 7. The oil bath temperature proved a reliable indicator of the reflux and distillation zones and temperature measurements inside the reflux column were unnecessary. A sticky organic residue formed in the boiling flask. This residue proved impossible to decant and was scrubbed out of the reactor with soapy water. A sticky organic residue also formed in the boiling flask in the trials with sodium oleate and potassium oleate. Although similar in colour to the residue produced by treatment with oleic acid, the residues from sodium oleate and potassium oleate appeared to the eye less stringy and more particulate in nature. This is, however, subjective and would need to be confirmed by analysis before decisions are based on this observation. The residues from the trial purification with Cu appeared much like crude TiCl₄ with copper shavings in it. After standing overnight in a sealed bottle, the residue appeared to solidify and turn white. This may be explained by oxidation of residual chlorides in contact with air.

When cleaning the boiling flask, the addition of water to residues remaining in the flask produced a mixture purple in colour. Copper reacts with some of the titanium tetrachloride to produce a lavender material that renders some impurities non-volatile. It is believed that the lavender material is probably CuCl₂TiCl₃ or involves the reduction of some of the titanium tetrachloride to a trivalent titanium chloride compound.
Product analysis
The crude TiCl₄ used in the experiments was produced in Mintek’s pilot plant chlorination facility using rutile as a titanium feedstock. For all the reagents tested, clear TiCl₄ were produced, as shown in Figure 9. The product analyses for impurities are given Table V. Typical V contents in crude TiCl₄ in industry are around 200-500 ppm; Al is in the range of 50-200 ppm and Fe below 50 ppm. Our test uses a V level of around 700 ppm. This is much higher than the typical value of 200-500 ppm V in crude TiCl₄.

Table V. Analysis of crude and purified TiCl₄.

<table>
<thead>
<tr>
<th>Purified Product</th>
<th>Mass, g</th>
<th>Crude TiCl₄</th>
<th>Ref. actual</th>
<th>Ref. result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reagent</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>337</td>
<td>304</td>
<td>307</td>
<td>322</td>
</tr>
<tr>
<td>Oleic acid</td>
<td>726</td>
<td><2</td>
<td><2</td>
<td><2</td>
</tr>
<tr>
<td>Sodium oleate</td>
<td>4</td>
<td>5.7</td>
<td>5.3</td>
<td>5.1</td>
</tr>
<tr>
<td>Potassium oleate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>20</td>
<td><2</td>
<td><2</td>
<td><2</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The analytical method is challenging, as TiCl₄ is very reactive with any moisture and the resulting TiO₂ particles and HCl vapour cause blockages in the instruments and interfere with the readings.

Between 88 and 97 wt% of the crude TiCl₄ was recovered as purified product.

Economic evaluation
In Table VI the high cost of copper compared to the organic reagents can be seen. Various grades of mineral oils are currently used in the commercial production of TiCl₄. The use of metal powders is not favoured due to economic reasons. The use of mineral oil entails some operational challenges as it forms sludge that causes fouling in the condensers.
Table VI. Economic comparison of reagents used in experiments (R15.71 per US dollar).

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Source</th>
<th>Price US$/t</th>
<th>Dosage wt% of crude TiCl₄</th>
<th>Price R/t crude TiCl₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper</td>
<td>InvestMine, 2016</td>
<td>4776</td>
<td>1.00</td>
<td>750.31</td>
</tr>
<tr>
<td>Oleic acid</td>
<td>Alibaba, 2016a</td>
<td>1200</td>
<td>0.15</td>
<td>28.28</td>
</tr>
<tr>
<td>Sodium oleate</td>
<td>Alibaba, 2016b</td>
<td>2000</td>
<td>0.25</td>
<td>78.55</td>
</tr>
<tr>
<td>Potassium oleate</td>
<td>Alibaba, 2016c</td>
<td>2000</td>
<td>0.25</td>
<td>78.55</td>
</tr>
</tbody>
</table>

DISCUSSION

The use of various treatment agents for the purification of raw TiCl₄ by distillation was investigated. The purity of raw and distilled TiCl₄ samples was measured by the amount of impurities present. However, impurity levels below 10 ppm were difficult to detect and required extreme precision in the make-up of reference and control solutions.

The use of organic materials as treatment agents often results in the introduction of organic contaminants into the system and requires an additional step for their removal. Regular shutdowns and maintenance are required in order to clean the equipment, as the residue formed by the organic contaminants reduces the heat transfer efficiencies. If these contaminants are formed by polymerization of the treatment agents, an agent that does not polymerize easily, such as saturated alkanes or alcohols, should produce less fouling. Such treatment reagents would need to be tested in practise to ensure that they provide the same or better efficiency than those currently used.

The use of inorganic treatment agents such as copper results in chlorides that are non-volatile and do not interfere with heat transfer; however, metals and their powders are expensive and furthermore their recovery from waste before disposal could prove problematic.

According to the literature H₂S is effective in the removal of vanadium impurities, but since it is a poisonous gas its use would be very limited because of the associated safety, transportation, and environmental issues.

CONCLUSION

Experimental trials confirmed the effectiveness of copper and oleic acid and its alkali salts as reagents to bind impurities in crude TiCl₄, enabling the distillation of purified TiCl₄ suitable for use in the TiO₂ pigment industry.

The literature survey and thermodynamic studies illustrated possible reactions taking place between impurities and reagents. Additional work is planned to confirm the reaction mechanism for carbonaceous reagents by comparing the effectiveness of carbon, and saturated hydrocarbons such as alkanes, alcohols, and esters, with the known carboxylic acids as treatment agents in order to identify a cost-effective non-fouling reagent suitable for industrial use.

REFERENCES

http://www.infomine.com/investment/metal-prices/copper/5-year/ [accessed 5 April 2016].

https://www2.chemistry.msu.edu/faculty/reusch/virttxtjml/crbacid1.htm [accessed 19 Feb. 2016].

Susanna Aletta Carolina Hockaday

Engineer
Mintek

After obtaining her masters of science in engineering degree at the University of Stellenbosch, Lina joined Mintek’s Pyrometallurgy Division in 2002 and gained experience in DC arc furnace technology and extractive metallurgy including the recovery of PGMs to iron alloys, ferrochrome smelting and the production of titanium metal in a Kroll reactor. In 2011 she resigned to be a full time mother, but re-joined Mintek in 2015. She is currently involved in TiCl₄ production and purification research, as well as research into the application of concentrated solar thermal energy in the minerals processing industry.